## An Efficient Anonymous Credential System

Norio Akagi (Kyoto University)

Yoshifumi Manabe (Kyoto University, NTT Laboratories)

Tatsuaki Okamoto (Kyoto University, NTT Laboratories)

### **Anonymous Credential**

- Credential?
  - Certificate for person's qualification/attribute
    - \*Eg.) "Student of Kyoto U", "Right to enter a room"



# Problem of a system(1) -Unforgeability



## Problem of a system(2) -Privacy



# Desirable Properties of a system(1) -Unforgeability



# Desirable Properties of a system(2) – Anonymity & Unlinkability



# Desirable Properties of a system(3) –Blacklist of Users

- Revocation of Credentials
  - case1-Blacklistable



# Desirable Properties of a system(4) – Identity Revealing

- Revocation of Credentials
  - case2-Revealing Identity of bad users



## Additional Security Property on the System with Revocation(1)

#### Traceability

User cannot produce a credential such that

- Opener cannot identify the origin
- Opener believes it has identified the origin but is unable to produce a correct proof of its claim.



### Additional Security Property on the System with Revocation(2)

#### Non-frameability

Opener cannot create a proof, accepted by Verifier, that an honest user produced a certain valid proof of the credential unless the user really did produce the proof of the credential.



### Related Researches

- Jan Camenisch and Anna Lysyanskaya "Signature Schemes and Anonymous Credentials from Bilinear Maps" (CRYPTO2004)
  - →discrete log based (under LRSW assumption)

Oracle assumption

- \*Jan Camenisch and Anna Lysyanskaya "An efficient non-transferable anonymous multi-show credential system with optional anonymity revocation" (EUROCRYPTO2001)
- →strong RSA based, identity revealing function

### Related Researches

- Patrick Tsang, Man Ho Au, Apu Kapadia, and Sean Smith
- "Blacklistable anonymous credentials:
  Blocking misbehaving users without TTPs."
  (CCS2007)
  - →revocation(Blacklistable) function

### Our Results

- We construct two anonymous credential systems(SDH assumption based).
  - Basic system
  - without revocation function
  - perfect-anonymity-and-unlinkability
  - System with Revocation
  - with two ways of revocation (blacklistable, credential revealing)
  - computational-anonymity-and-unlinkability

### Bilinear Groups

- 1.  $G_1$  and  $G_2$  are two cyclic groups of prime order p.
- 2.  $g_1$ : generator of  $G_1$ ,  $g_2$ : generator of  $G_2$
- 3.  $\psi$ : isomorphism from  $G_2$  to  $G_1$ , with  $\psi(g_2) = g_1$
- 4.  $e: G_1 \times G_2 \to G_T$ , where  $|G_1| = |G_2| = |G_T| = p$ 
  - ··· non degenerate bilinear map
  - $e(u^a, v^b) = e(u, v)^{ab}$  for  $u \in G_1, v \in G_2$
  - $e(g_1, g_2) \neq 1$
- 5. e,  $\psi$ , group action in  $G_1, G_2, G_T$  can be efficiently computed

## Our Basic Anonymous Credential System

#### Key Generation





Authority

 $(\mathbb{G}_1, \mathbb{G}_2)$ : bilinear groups

 $\psi$ : isomorphism from  $\mathbb{G}_2$  to  $\mathbb{G}_1$ 

 $g_2, u_2, v_2 \in \mathbb{G}_2$ 

 $g_1 \leftarrow \psi(g_2), u_1 \leftarrow \psi(u_2), \text{ and } v_1 \leftarrow \psi(v_2)$ 

 $x \in \mathbb{Z}_p^*$ , compute  $w_2 \leftarrow g_2^x \in \mathbb{G}_2$ 

**Public key:**  $g_1, g_2, w_2, u_2, v_2$ 

Secret key: x

## Our Basic Anonymous Credential System

#### Credential Issuing

Request to issue a credential on qualification *m* 

Authority







**Public key:**  $g_1, g_2, w_2, u_2, v_2$ 

Secret key: x

Verification
$$e(\sigma, w_2 g_2^r) = e(g_1, g_2^m u_2 v_2^s)$$

### Our Basic Anonymous Credential System

#### Showing Anonymous Credential

Shows a randomized credential and proves the correctness by

Verifier





$$\sigma \leftarrow (g_1^m u_1 v_1^s)^{\frac{1}{x+r}}$$

$$\alpha \leftarrow (w_2 g_2^r)^{\theta},$$

$$t \in_R Z_p^*, \theta \in_R Z_p^* \beta \leftarrow (g_2^m u_2 v_2^s)^t.$$

User

$$\beta \leftarrow \left(g_2^m u_2 v_2^s\right)^t.$$



$$e(\sigma',\alpha) = e(g_1,\beta)$$



and 
$$(t \neq 0, st)$$
 for  $\beta = (g_2^m)^t u_2^t v_2^{st}$ 

### Security of Our Basic System

- Unforgeability
  - computational
  - SDH assumption
- Anonymity and Unlinkability
  - information-theoritical

## Efficiency of Our Basic System

|               | CL04              | Ours             |
|---------------|-------------------|------------------|
| Assumption    | LRSW              | SDH              |
| Size of pk    | 7 elements        | 5 elements       |
| Size of sk    | 3 elements        | 1 element        |
| Size of Cred  | 5 elements        | 3 elements       |
| Size of Proof | 4 elements        | 17 elements      |
| Ops to Issue  | 5 exp             | 1 exp            |
| Ops to Verify | 8 pairings + 2exp | 2 pairings+2exp  |
| Ops to Prove  | 8 pairings+7exp   | 2 pairings+15exp |

## Our Anonymous Credential System With Revocation

Key Generation



PK: *PK*<sub>11</sub>



Opener



Authority

$$(\mathbb{G}_1,\mathbb{G}_2)$$
: bilinear groups

$$(\mathbb{G}_1,\mathbb{G}_2)$$
. bilinear group

$$g_2, u_2, v_2 \in_{\mathbb{R}} \mathbb{G}_2$$

$$g_1 \leftarrow \psi(g_2), u_1 \leftarrow \psi(u_2), \text{ and } v_1 \leftarrow \psi(v_2)$$

$$x \in \mathbb{Z}_p^*$$
, compute  $w_2 \leftarrow g_2^x \in \mathbb{G}_2$ 

$$g,h\in\mathbb{G}_2$$

User

 $\psi$ : isomorphism from  $\mathbb{G}_2$  to  $\mathbb{G}_1$ 

$$\leftarrow \psi(v_2)$$

**Public key:**  $g_1, g_2, w_2, u_2, v_2, g, h$ 

Secret key: x

## Our Anonymous Credential System With Revocation

#### Credential Issuing

Signature on  $g_2^q$  by using  $SK_U$ 





**Authority** 

Verifies  $Sig_U$  by using  $PK_U$ 

Verification  $e(\sigma, w_2 g_2^r) = e(g_1, g_2^{m+q} u_2 v_2^s)$ 



In database DB

### Our Anonymous Credential System With Revocation

### Showing Anonymous Credential

Blacklistable  $e(\chi, g_2) \neq e(f, b_i) e(\widehat{f}, g_2^{\rho})$ 





$$PK\{(q, \rho, \theta, r\theta, s\theta, t_1, t_2) : \chi = f^q \hat{f}^\rho, \alpha' = w_2^0 g_2^{r\theta} \beta' = \{g_2^m\}^\theta g_2^{q\theta} u_2^\theta v_2^{s\theta} \alpha'^{t_1 + t_2}, d_1 = \psi(U)^{t_1}, d_2 = \psi(V)^{t_2}\}$$

$$\sigma \leftarrow \left(g_1^{m+q}u_1v_1^s\right)^{\frac{1}{x+r}}$$
 $r, s$ 

$$t_1, t_2 \in_R Z_p^*,$$

$$\theta \in_R Z_p^*, \rho \in_R Z_p^*,$$

$$f, \hat{f} \in {}_{R} G_{1}$$

$$\sigma' \leftarrow \sigma \cdot g_1^{t_1 + t_2} = \left( g_1^{m+r} u_1 v_1^s \right)^{x+r} \cdot g_1^{t_1 + t_2},$$

$$\alpha \leftarrow (w_2 g_2^r)^{\theta},$$

$$\beta \leftarrow \left(g_2^{m+q}u_2v_2^s\right)^t \cdot \alpha^{t_1+t_2},$$

$$d_1 \leftarrow \psi(U)^{t_1}, d_2 \leftarrow \psi(V)^{t_2},$$

$$\chi \leftarrow f^q \widehat{f}^\rho$$
,

$$f, \hat{f}, \rho$$



 $e(\sigma',\alpha)=e(g_1,\beta)$ 

$$\begin{bmatrix}
\mathsf{BL} \\
= (b_1, b_2, \cdots b_l) \\
\uparrow \\
g_2^{q_2}
\end{bmatrix}$$

## Our Anonymous Credential System With Revocation

Revealing Identity of a bad user



$$\sigma' \leftarrow \sigma \cdot g_1^{t_1+t_2} = \left(g_1^{m+q} u_1 v_1^{s}\right)^{x+r} \cdot g_1^{t_1+t_2},$$

$$\alpha \leftarrow (w_2 g_2^r)^{\theta},$$

$$\beta \leftarrow \left(g_2^{m+q}u_2v_2^s\right)^t \cdot \alpha^{t_1+t_2},$$

$$d_1 \leftarrow \psi(U)^{t_1}, d_2 \leftarrow \psi(V)^{t_2}$$

$$\sigma = \frac{\sigma'}{d_1^{\frac{1}{\xi_1}} d_2^{\frac{1}{\xi_2}}}$$

$$(r, s, m, g_2^q, Sig_U)$$
from DB

$$PK\{(\xi_1, \xi_2) : U = g_1^{\xi_1},$$

$$V = g_2^{\xi_2}, \sigma = \sigma' / \left( d_1^{1/\xi_1} d_2^{1/\xi_2} \right) \}$$



**Opener** 



$$e(\sigma',\alpha) = e(g_1,\beta)$$

 $e(\sigma',\alpha) = e(g_1,\beta)$  checks  $Sig_U$  by using  $PK_U$ 

## Efficiency of Our System with Revocation

|               | CL01              | Ours                                              |
|---------------|-------------------|---------------------------------------------------|
| Assumption    | strong RSA, DDH   | SDH                                               |
| Size of pk    | 10 elements ( N ) | 8 elements ( p )                                  |
| Size of sk    | 7 elements ( N )  | 5 element ( p )                                   |
| Size of Cred  | 3 elements ( N )  | 3 elements ( p )                                  |
| Size of Proof | 9 elements ( N )  | 42 elements ( p )                                 |
| Size of Open  | 15 elements ( N ) | 15 elements ( p )                                 |
| Ops to Issue  | 1 exp (N)         | 4 exp (p)                                         |
| Ops to Verify | 1 exp (N)         | 4 exp (p)                                         |
| Ops to Prove  | 9 exp (N)         | 2exp, I+2 pairings (p)<br>(I : Blacklisted users) |
| Ops to Reveal | 14 exp (N)        | 12 exp, 2 pairing (p)                             |

## Security of Our System with Revocation

- Unforgeability
  - computational
  - SDH assumption
- Anonymity and Unlinkability
  - computational, except for the Opener
  - DDL assumption

## Security of Our System with Revocation

- Treaceability
  - computational
  - SDH assumption
- Non-frameability
  - computational
  - SDH assumption

### Conclusion

- Two anonymous credential systems
  - The Basic system
    - information-theoretically anonymous-andunlinkable
  - The System with revocation
    - Blacklistable, Identity Revealing
  - Proofs of Security
  - Comparison of Efficiency