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Talk Outline

• Threshold Signatures and Proactive Signatures

– Model and Motivation

– Importance of Proactive Security

– Importance of Non-Interactive Signing

• Ingredients of our Protocol:

– Threshold RSA Signature of Shoup

– Proactive RSA Signature of Rabin

• Our Protocol:  Proactive RSA with Non-interactive Signing

• Extensions and Open Questions
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Threshold Signatures:  Main Idea

s

Share the secret key among n players, SK!(SK1,…,SKn), s.t.

we can securely tolerate corruption of t out of n players.

i.e. if an adversary corrupts at most t out of n players

      [Security:]        he does not learn anything about the key SK

    (and cannot forge signatures)

      [Robustness:]  he cannot prevent the computation of a correct

    signature by the remaining n-t players
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Applications: 

Fault-Resistance

1. Roots of Trust

•  Certification Authority

•  Time-stamping

2. Secure Services

•  Access Control

•  Storage

3. Decentralized Groups

Beyond Threshold Cryptosystems
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Mobile Adversary

eventually

compromises any

threshold

cryptosystem…

Fundamental Limit of Threshold Cryptosystems:

What if the adversary eventually corrupts more than t players?

Eventual corruption of all players is easier than you think:

-  inevitable eventual breakdown

-  periodical service / upgrades

Stronger Adversary:  Mobile Adversary, who corrupts up to t 

        players in every fixed time interval

…



T=0 T=1 T=2 T=3 T=4
…

SK1

SK3 SK4
SK2

SK6

SK5

SK7
SK8

Solution:  Proactive Security

Main Idea: Refresh the sharing of the key between each interval

=> Secrets learned in one interval are useless in another

=> System tolerates up to t corruptions in each time interval

Adversary corrupts

up to t players

in each interval,

but proactive refresh

makes shares from

different intervals

incompatible…
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Previous Work on Proactive and Threshold RSA

Threshold RSA:  signing protocol is always fast (non-interactive)

! Desmedt-Frankel’90:  heuristic security

! DDFY’94:  secure, but O(n)-sized shares

! FGY’96, GJKR’96:  extension to malicious security

! Shoup’00:  O(1)-sized shares, “safe” RSA modulus

! DK’01, DD’04: larger class of RSA public keys

Proactive RSA:

! FGM’97a: combinatorial scheme

! FGM’97b: polynomial shares, re-sharing per signature

! Rabin’98: simplification of FGM’97b, interactive signing

! JS’05: reduced share sizes

Adaptive Security in Proactive RSA:

! CGJKR’99, JL’01, FMY’01, ADN’06

- Best Threshold RSA has non-interactive signing

- Best Proactive RSA has  interactive (2 stage) signing



Problems with Interactive Signing of Rabin’98 (and JS’04):

Shoup ‘00N/A

??Rabin ‘98
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!  Signing in 1st round requires presence of all n players

" Protocol takes 2-rounds if one player is missing / slow

!  If player is missing, his share is publicly reconstructed in 2nd round

" Communication faults are equated with malicious faults

" Much worse security in practice, where communication faults
     are much easier to induce than corruptions

" Unusable for networks where partitions are common

- e.g. Peer to peer, MANETs, sensors, and others…

[ Almansa, Damgard, Nielsen ’06:  2-round, no public reconstruction*]

   (*) Remains interactive, but achieves adaptive security

•  One-round signing,

   needs only t of n players

  (costs almost as Shoup’00)

•  No public share

   reconstruction

•  Efficient proactive

   update (as in Rabin’98)

Given RSA instance (N,e,d)

Shamir’s secret sharing modulo !(N):

! pick t-degree polynomial f s.t. d = f(0) mod!(N)

! player Pi gets a “share” di = f(i)  mod!(N)

[Security: f is a t-degree poly.  !  f(0) is independent from any t values of f ]

! Recall polynomial interpolation (over integers):

   For any set G of t+1 indexes i, there are (rational) constants ci s.t.

! Each Pi outputs si = mdi  mod N
! Compute RSA signature from si’s of any t+1 (honest) players:
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Problem:  Lagrange Interpolation ci constants are not integers!

ci = (#j in G j) / (#j in G j-i)

Exponentiation to fractional exponent = computing roots mod N:  Hard under RSA!

Non-Interactive Signing!

N = p*q, !(N)=(p-1)(q-1)

e*d = 1 mod !(N)

PK = e,  SK = d

Sign: s " md  mod N

Ver.:  m = se [= md*e] mod N

Threshold RSA:
[Shoup’00]



Given RSA instance (N,e,d)

Shamir’s secret sharing modulo !(N):

! pick t-degree polynomial f s.t. d = f(0) mod!(N)

! player Pi gets a “share” di = f(i)  mod!(N)

! Recall polynomial interpolation (over integers):

   For any set G of t+1 indexes i, there are (rational) constants ci s.t.

! Each Pi outputs si = mdi  mod N
! Compute RSA signature from si’s of any t+1 (honest) players:
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Problem:  Lagrange Interpolation ci constants are not integers!

ci = (#j in G j) / (#j in G j-i) * L,  where L=n!   =>   ci’s are integers now!

Exponentiation to fractional exponent = computing roots mod N:  Hard under RSA!

L*

L*

integer

Compute: mLd  #  md

If gcd(e,L)=1, use

Euclidean Algorithm to

find a,b s.t. ae + bL= 1

s = m a 
 * ! b

Check:

se = mae  * (mLd)be =

    = mae + Lb = m

^

Threshold RSA:
[Shoup’00]

Given RSA instance (N,e,d)

Shamir’s secret sharing modulo !(N):

! pick t-degree polynomial f s.t. d = f(0) mod!(N)

! player Pi gets a “share” di = f(i)  mod!(N)

! Recall polynomial interpolation (over integers):

   For any set G of t+1 indexes i, there are (rational) constants ci s.t.

! Each Pi outputs si = mdi  mod N
! Compute RSA signature from si’s of any t+1 (honest) players:

N = p*q, !(N)=(p-1)(q-1)

e*d = 1 mod !(N)

PK = e,  SK = d

Sign: s " md  mod N

Ver.:  m = se [= md*e] mod N

! "
#=

Gi i
ifc0f )()(

]mmm[   N mod ss
d ifcdcc

Gi i

iii
i

=!===
""

# $$
)(

)(

Problem:  Lagrange Interpolation ci constants are not integers!

ci = (#j in G j) / (#j in G j-i) * L,  where L=n!   =>   ci’s are integers now!

Exponentiation to fractional exponent = computing roots mod N:  Hard under RSA!
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Solution #2:

• Publish si = mLdi

      instead of si = mdi

• Simulation:

 mLdi = (md)Lc0 mL(c1d1+…)

• Now ! = mL*L*d, not mL*d

• Euclidean Algorithm(!) ! md

   because gcd(e,L2)=1

Threshold RSA:
[Shoup’00]

Problem #2:

Not clear how to argue that mdi’s reveal

no additional information about d than md...

How to simulate( md , d1, …, dt ) ! mdi  ?

•  di = c0d + c1d1+…+ctdt for Lagrange coefs. cj’s

•  mdi = (md)c0 m(c1 d1 +…+ ct dt)

•  But these exponents also can be fractions…



How to “Proactivize”

(Shoup’s) Threshold RSA?

Given RSA instance (N,e,d)

Shamir’s secret sharing modulo !(N):

! pick t-degree polynomial f s.t. d = f(0) mod!(N)

! player Pi gets a “share” di = f(i)  mod!(N)

! Recall polynomial interpolation (over integers):

   For any set G of t+1 indexes i, there are (rational) constants ci s.t.

! Each Pi outputs si = mLdi  mod N
! Compute RSA signature from si’s of any t+1 (honest) players:
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Given RSA instance (N,e,d)

Shamir’s secret sharing modulo !(N):

! pick t-degree polynomial f s.t. d = f(0) mod!(N)

! player Pi gets a “share” di = f(i)  mod!(N)

How to “Proactivize”

(Shoup’s) Threshold RSA?

N = p*q, !(N)=(p-1)(q-1)

e*d = 1 mod !(N)

PK = e,  SK = d

Sign: s " md  mod N

Ver.:  m = se [= md*e] mod N

Recall:  Proactive Refreshment [HJKY’95] (applied to RSA)

! Pick t-degree polynomial $ s.t. $(0) = 0  mod!(N)

! Each Pi gets an “update share” $(i)  mod!(N)

! Pi re-computes share d’i " di + $(i)  mod!(N)

! Note: d’i = f(i) +$(i) = f’(i)  mod!(N),

      where f’ = f+$is a t-degree poly. s.t. f’(0) = f(0) = d mod!(N)

Q1: Who picks $ ?

A: Easy!  Each Pi picks $(i), shares it, and $ = $(1) + … + $(n)

Q2: How to do share $(i) when no one knows the modulus !(N) ??

A: Not so easy…

… but achieved in [FGM97b] with secret-sharing over integers



Given secret d in [0,R]

Pick vector a = ( a1,…,at ) of coefficients at random in [0,…,RtL22k]

Define f(x) = Ld + a1x + … atx
t

Pi’s share: si = f(i)   [over integers]

Let the set of corrupt players be {1,…,t}

Let s = ( s1,…,st ), w = Ld, w = ( w,…,w )

Note that s = w + Ma

Security:

Compare distributions of s given w1 and w2:

           s = w1 + Ma1 = w2 + Ma2

"  (w1 - w2) = M (a1 - a2)

"  a1 = a2 + M(-1) (w1 - w2)

1. Why length?    Since (w1 - w2) < $w < LR, and highest element in 

     M(-1) is tL, the mask size should be LR· tL·2k

2.   Why Ld?  M(-1) has non-integer entries, but denominators divide L=n!

Shamir’s Secret-Sharing over Integers [FGMY97b]
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Entries of M(-1)

are similar to

Lagrange

coefficients:
#k (i-k) / (j-k)

"#Secret key d shared additively ! (d1,…,dn) s.t. d1+…+dn = d 

                [this is a simplification]

$#Each di is shared using Shamir’s secret-sharing over integers

%#Proactive refresh protocol is simple:
- Each Pi shares di additively ! (di1,…,din) s.t. di1 +…+ din = di
- Each Pi sends dij to Pj
- Pj computes dj’ " d1j + d2j +… + dnj and shares it over integers

&#Signing is conceptually simple:

- Each player produces mdi

- Missing di’s are publicly reconstructed from the back-up sharings

5. However, this signing protocol is:

- interactive (unless all n players are present) and

- exposes shares (e.g. insecure if network is partitioned)

Tal Rabin’s Proactive RSA

[Rabin98]



Our Protocol:  Proactive RSA with Fast Signing

"#Secret key d shared additively ! (d1,…,dn) s.t. d1+…+dn = d 

                [this is a simplification]

$#Each di is shared using Shamir’s secret-sharing over integers

%#Proactive refresh protocol is simple:
- Each Pi shares di additively ! (di1,…,din) s.t. di1 +…+ din = di
- Each Pi sends dij to Pj
- Pj computes dj’ " d1j + d2j +… + dnj and shares it over integers

&#Signing is conceptually simple:

- Each player produces mdi

- Missing di’s are publicly reconstructed from the back-up sharings

5. However, this signing protocol is:

- interactive (unless all n players are present) and

- insecure if network is partitioned

&#Signing with Shamir’s secret-sharing over integers: [FGMY’97b,Rab98]

- By linearity of Shamir-SS-over-Z:

• Sharings of (d1,…,dn) imply Sharing of d = d1+…+ dn
• Shamir-SS over integers  !   f(0) = Ld   (instead of d)

- Signing protocol similar to Shoup’s: [Shoup’00]

• Each player produces mLdi

• Interpolation reconstructs mL d  (instead of mL d)

• Euclidean Algorithm reconstructs md

3 2

Extensions:

! More exact security argument for Secret-sharing over integers

• Share size reduced to  !  |N| + sec.par. + 3log(n!)

! Further extension:  Getting rid of additive sharing altogether

• Proactive refresh protocol can be done by only t players

• Using verifiable encryption it can be done non-interactively

Open Questions:

! Extension to more general RSA moduli N.  (Now: safe RSA modulus)

! Extension to e=3.  (Now: require gcd(e,n!)=1)

! Removing the n! factor completely

• This would allow very large groups, e.g. peer-to-peer, MANETs

• Indexes could be MAC addresses instead of consecutive integers

Extensions and Open Problems


