Proactive RSA Signatures with Non-Interactive Signing

Stanislaw Jarecki and Josh Olsen

School of Information and Computer Science University of California, Irvine

Talk Outline

- Threshold Signatures and Proactive Signatures
 - Model and Motivation
 - Importance of Proactive Security
 - Importance of Non-Interactive Signing
- Ingredients of our Protocol:
 - Threshold RSA Signature of Shoup
 - Proactive RSA Signature of Rabin
- Our Protocol: Proactive RSA with Non-interactive Signing
- Extensions and Open Questions

Tal Rabin's Proactive RSA [Rabin98]

Secret key d shared additively \rightarrow (d₁,...,d_n) s.t. d₁+...+d_n = d [this is a simplification]

Each di is shared using <u>Shamir's secret-sharing over integers</u>

■ Proactive refresh protocol is simple:

- Each P_i shares d_i additively \rightarrow (d_{i1},...,d_{in}) s.t. d_{i1} +...+ d_{in} = d_i
- Each P_i sends d_{ij} to P_j P_i computes d_i' \leftarrow d_{1i} + d_{2i} +... + d_{nj} and shares it over integers -

Signing is conceptually simple:

- Each player produces m^{di}
- Missing d's are publicly reconstructed from the back-up sharings
- 5. However, this signing protocol is:
 - interactive (unless all n players are present) and
 - exposes shares (e.g. insecure if network is partitioned) -

Our Protocol: Proactive RSA with Fast Signing $\texttt{Cat}Secret \text{ key d shared additively} \rightarrow (\texttt{d}_1, \dots, \texttt{d}_n) \text{ s.t. } \texttt{d}_1 + \dots + \texttt{d}_n = \texttt{d}$ [this is a simplification] Each di is shared using <u>Shamir's secret-sharing over integers</u> Proactive refresh protocol is simple: Each P_i shares d_i additively \rightarrow (d_{i1},...,d_{in}) s.t. d_{i1} +...+ d_{in} = d_i Each P_i sends d_{ij} to P_j P_j computes $d_j' \leftarrow d_{1j} + d_{2j} + ... + d_{nj}$ and shares it over integers -Signing with Shamir's secret-sharing over integers: [FGMY'97b,Rab98] By linearity of Shamir-SS-over-Z: Sharings of $(d_1, ..., d_n)$ imply Sharing of $d = d_1 + ... + d_n$ Shamir-SS over integers \rightarrow f(0) = Ld (instead of d) Signing protocol similar to Shoup's: [Shoup'00] Each player produces m^{Ld_i} • • Interpolation reconstructs m^{L^3d} (instead of m^{L^2d}) Euclidean Algorithm reconstructs m^d Extensions and Open Problems Extensions: More exact security argument for Secret-sharing over integers Share size reduced to $\leq |N| + \sec par + 3\log(n!)$ Further extension: Getting rid of additive sharing altogether Proactive refresh protocol can be done by only t players Using verifiable encryption it can be done non-interactively ٠ **Open Questions:** Extension to more general RSA moduli N. (Now: safe RSA modulus) Extension to e=3. (Now: require gcd(e,n!)=1) Removing the n! factor completely This would allow very large groups, e.g. peer-to-peer, MANETs Indexes could be MAC addresses instead of consecutive integers