Proactive RSA Signatures
with
Non-Interactive Signing

Stanislaw Jarecki and Josh Olsen

School of Information and Computer Science
University of California, Irvine

Talk Outline

Threshold Signatures and Proactive Signatures
— Model and Motivation
— Importance of Proactive Security
— Importance of Non-Interactive Signing
Ingredients of our Protocol:
— Threshold RSA Signature of Shoup

— Proactive RSA Signature of Rabin
Our Protocol: Proactive RSA with Non-interactive Signing

Extensions and Open Questions

Threshold Signatures: Main Idea

Share the secret key among n players, SK—(SK;,...,SK,), s.t.
we can securely tolerate corruption of t out of n players.

i.e. if an adversary corrupts at most t out of n players
[Security:] he does not learn anything about the key SK
(and cannot forge signatures)

[Robustness:] he cannot prevent the computation of a correct
signature by the remaining n-t players

Applications:
Fault-Resistance

1. Roots of Trust

+ Certification Authority
» Time-stamping

2. Secure Services

» Access Control
» Storage

3. Decentralized Groups

Beyond Threshold Cryptosystems

Fundamental Limit of Threshold Cryptosystems:
What if the adversary eventually corrupts more than t players?

Eventual c ion of all players is easier than you think:
= Inevitable eventual breakdo
-_periodical service / upgrade

Stronger Adversary: Mobile Adversary, who corrupts up to t
players in every fixed time interval

SK, SK, SK,
. SK
Mobile Adversary ‘l l l

eventually oK
compromises any °

SK,
threshold g SKr l

cryptosystem...

@1_

Solution: Proactive Security

Main Idea: Refresh the sharing of the key between each interval

=> Secrets learned in one interval are useless in another

=> System tolerates up to t corruptions in each time interval

Adversary corrupts
up to t players

in each interval,

but proactive refresh
makes shares from
different intervals

incompatible...

EQQ Qs

o =
=]

‘@ % SK, SK,SK, | SK, SK, SK, SK, SK,
T=0 T=1

s g

T=2 T=3 T=4

Previous Work on Proactive and Threshold RSA

Threshold RSA:

signing protocol is always fast (non-interactive)

» Desmedt-Frankel'90: heuristic security

= DDFY’94:

secure, but O(n)-sized shares

» FGY'96, GJKR’96: extension to malicious security

@ Shoup’00;
= DK'01, DD’04:

Proactive RSA:

= FGM’97a:

= FGM’97b:
05:

=J

O(1)-sized shares, “safe” RSA modulus
larger class of RSA public keys

combinatorial scheme

polynomial shares, re-sharing per signature
simplification of FGM’97b, interactive signing
reduced share sizes

Adaptive Security in Proactive RSA:
» CGJKR’99, JL’01, FMY’01, ADN’06

- Best Threshold RSA has non-interactive signing
- Best Proactive RSA has interactive (2 stage) signing

Problems with Interactive Signing of Rabin’98 (and JS'04):

= Signing in 1%t round requires presence of all n players
=> Protocol takes 2-rounds if one player is missing / slow

= |f player is missing, his share is publicly reconstructed in 2" round
= Communication faults are equated with malicious faults

= Much worse security in practice, where communication faults
are much easier to induce than corruptions
= Unusable for networks where partitions are common
- e.g. Peer to peer, MANETS, sensors, and others...
[Almansa, Damgard, Nielsen ’06: 2-round, no public reconstruction®]
(*) Remains interactive, but achieves adaptive security

Proactive Rabin ‘98 This * One-round signing,
Security abin Work | needs only t of n players

(costs almost as Shoup’00)
onl * No public share
ny N/A Shoup ‘00 reconstruction
Threshold . .
« Efficient proactive
update (as in Rabin’98)

Interactive | Non-Interactive
Signing Signing

N =p-q, ¢(N)=(p-1)(g-1)
Threshold RSA: |ed =1 mod ¢(N)
[Shoup’00] PK=e, SK=d
Given RSA instance (N,e,d) Sign: s — m9 mod N
Shamir’s secret sharing modulo @(N): Ver.: m=s®[= m%®] mod N
= pick t-degree polynomial f s.t. d = f(0) mod@(N)
= player P, gets a “share” d, = f(i) mod@(N)
[Security: f is a t-degree poly. — f(0) is independent from any t values of f]

= Recall polynomial interpolation (over integers):
For any set G of t+1 indexes i, there are (rational) constants ¢, s.t.

£(0) = E e Ci f(1) [Non-Interactive Signing!

= Each P, outputmod N
» Compute RSA signature from s;’s of any t+1 (honest) players:

Cy 4. i.f'
s=l_L€G(si { mod N [=1_[mcldl =mEc ®om 9

Problem: Lagrange Interpolation c, constants are not integers!
Ci = (Ojin) / (I g J-0)
Exponentiation to fractional exponent = computing roots mod N: Hard under RSA!

Threshold RSA:
[Shoup’00]
Given RSA instance (N,e,d)
Shamir’s secret sharing modulo @(N):

= pick t-degree polynomial f s.t. d = f(0) mod@(N) | Compute: m

N = p-q, 9(N)=(p-1)(9-1)

e-d =1 mod @(N)

PK=e¢, SK=d

Sign: s «— m9 mod N

Ver.: m =s®[= m%€] mod N

Ld _, nd

= player P, gets a “share” d, = f(i) mod@(N) If gcd(e,L)=1, use

Euclidean Algorithm to

= Recall polynomial interpolation (over integers):

For any set G of {+1 indexes i, there are

L£(0) = EEG c, -f(1)

= Each P,outputs S; = m% mod N

find a,b s.t. ae + bL=1

integen . _ a.zb

Check:
s€=mae . (de)Qe =

= Compute RSA signature from s’s of any t+1 (hg =m2¢*lb=pm

A Ci d, s f(1) *
s=l_L€G(Si { mod N [=Hmcldl =mEc Y=t

Problem: Lagrange Interpolation c, constants are not integers!

C; = (jingJ) / (I gJ-i) * L, where L=n!

Exponentiation to fractional exponent = computing roots mod N: Hard under RSA!

=> ¢;s are integers now!

Problem #2:

Not clear how to argue that m4’s reveal

no additional information about d than m¢...
How to simulate(md, d,, ..., d,) — md% ?

* d,=c,d+c,d,+...+cd, for Lagrange coefs. c.’s

N = p-q, 9(N)=(p-1)(9-1)

e-d =1 mod @(N)

PK=e¢, SK=d

Sign: s «— m9 mod N

Ver.: m =s®[= m%€] mod N

j
mdi = (md)co mierdi+...+ctd)

* But these exponents also can be fractions...
\

» Recall polynomial interpolation (over int
For any set G of t+1\indexes i, there are

.G E(@)

mod N

Solution #2:

* Publish s; = mdi
instead of s, = mdi
* Simulation:
mLdi = (md)Lco mb(cidi+...)
« Now § = mL*L*d ot mL™d
« Euclidean Algorithm(§) — m4
because ged(e,L?)=1

» Compute RSA signature from s;’s of any t+1 (honest) players:

§=1_LEG(Si < mod N [=Hm

cydy — mzci'f(i)

Problem: Lagrange Interpolation c, constants are not integers!

C = (jingJ) / (I gJ-i) * L, where L=n!

Exponentiation to fractional exponent = computing roots mod N: Hard under RSA!

=> ¢;/s are integers now!

How to “Proactivize”
(Shoup’s) Threshold RSA?

Given RSA instance (N,e,d)

Shamir’s secret sharing modulo @(N):
= pick t-degree polynomial f s.t. d = f(0) mod@(N)
= player P, gets a “share” d, = f(i) modg(N)

= Recall polynomial interpolation (over integers):
For any set G of t+1 indexes i, there areinteger constants ¢, s.t.

L£(0) = EEG c, -f(1)

= Each P, outputs S; =mod N
= Compute RSA signature from s;’s of any t+1 (honest) players:

S= HiEG (s,)" mod N [= l_lmci'di = 2ot =

How to “Proactivize” ’:d: > ?;"é? 2:((,5;1)((1'1)

(Shoup’s) Threshold RSA? |PK=e, SK=d

_ _ Sign: s — m9 mod N
Given RSA instance (N,e,d) Ver.: m =s® [= m%€] mod N

Shamir’s secret sharing modulo @(N):
= pick t-degree polynomial f s.t. d = f(0) mod@(N)
= player P, gets a “share” d, = f(i) mod@(N)

Recall: Proactive Refreshment [HJKY’95] (applied to RSA)
» Pick t-degree polynomial & s.t. (0) =0 mod@(N)
= Each P, gets an “update share” (i) modp(N)
= P, re-computes share d’; < d, + 8(i) mod@(N)
= Note: d’; = (i) +&(i) = (i) mod@(N),
where " = f+dis a t-degree poly. s.t. f(0) = f(0) = d modg(N)

Q1: Who picks & ?

A: Easy! Each P, picks 5(), shares it, and & = 5(1) + ... + (")
Q2: How to do share 5() when no one knows the modulus @(N) ??
A: Not so easy...

... but achieved in [FGM97b] with secret-sharing over integers

Shamir's Secret-Sharing over Integers [FGMY97b]

Given secret d in [0,R]

Pick vector a = (ay,...,a;) of coefficients at random in [0,...,RtL22]
Define f(x) = Ld + a;x + ... axt!))
P’s share: s, = = (i) [over integers] 1 1% ... 1
2 2 o~
Let the set of corrupt players be {1,...,t} M =
Lets =(sq,....,8),w=Ld, w=(w,...,w) : : :
Note that s = w + Ma) "
t t t
Security: : (1)]
Compare distributions of s given w, and w,: Entru_as .Of M
_ N Ma —w. + Ma are similar to
S =W 1= W2 2 Lagrange
= (W, - M(a, -a,) coefficients:
= a,= a2w1 w,) Ty (k) / (k)

1. Why length? Since (w, - w,) <dw < LR, and highest element in
M(1) is tL, the mask size should be LR tL-2k
2. Why Ld? MY has non-integer entries, but denominators divide L=n!

Tal Rabin’s Proactive RSA

[Rabin98]
<e"Secret key d shared additively — (d4,...,d,)) s.t. d4+...+d, =d
[this is a simplification]

B Each d; is shared using Shamir’s secret-sharing over integers

E«@Proactive refresh protocol is simple:

- Each PI shares dl additively — (d|1,,d|n) s.t. d|1 +...+ dln = dl

- Each P, sends d;; to P;

- Pj computes dj “— d1j + d2j +...+ dnj and shares it over integers
gk’ Signing is conceptually simple:

- Each player produces md

- Missing d;’s are publicly reconstructed from the back-up sharings

5. However, this signing protocol is:
- interactive (unless all n players are present) and
- exposes shares (e.g. insecure if network is partitioned)

Our Protocol: Proactive RSA with Fast Signing

<z"Secret key d shared additively — (d4,...,d,)) s.t. d4+...+d, =d
[this is a simplification]

B Each d; is shared using Shamir’s secret-sharing over integers

Eka"Proactive refresh protocol is simple:
- Each PI shares dl addltlvely — (d|1,,d|n) s.t. d|1 +...+ dln = dl
- Each P, sends d;; to P;

- Pj computes dj “— d1j + d2j +...+ dnj and shares it over integers

Eka’Signing with Shamir’s secret-sharing over integers: [FGMY’97b,Rab98]
- By linearity of Shamir-SS-over-Z:
« Sharings of (dy,...,d,) imply Sharing of d =d4+...+ d,
* Shamir-SS over integers — f(0) =Ld (instead of d)
- Signing protocol similar to Shoup’s: [Shoup’00]
« Each player produces mLd s
* Interpolation reconstructs mLd (instead of m
* Euclidean Algorithm reconstructs md

L2d)

Extensions and Open Problems

Extensions:

= More exact security argument for Secret-sharing over integers
* Share size reduced to < |N| + sec.par. + 3log(n!)

= Further extension: Getting rid of additive sharing altogether

* Proactive refresh protocol can be done by only t players
* Using verifiable encryption it can be done non-interactively

Open Questions:

= Extension to more general RSA moduli N. (Now: safe RSA modulus)
= Extension to e=3. (Now: require gcd(e,n!)=1)

= Removing the n! factor completely

+ This would allow very large groups, e.g. peer-to-peer, MANETs
* Indexes could be MAC addresses instead of consecutive integers

