
Proactive RSA Signatures

with

Non-Interactive Signing

Stanislaw Jarecki and Josh Olsen

School of Information and Computer Science

University of California, Irvine

Talk Outline

• Threshold Signatures and Proactive Signatures

– Model and Motivation

– Importance of Proactive Security

– Importance of Non-Interactive Signing

• Ingredients of our Protocol:

– Threshold RSA Signature of Shoup

– Proactive RSA Signature of Rabin

• Our Protocol: Proactive RSA with Non-interactive Signing

• Extensions and Open Questions

SK1

m
n=8 t=3n=8 t=3

Threshold Signatures: Main Idea

s

Share the secret key among n players, SK!(SK1,…,SKn), s.t.

we can securely tolerate corruption of t out of n players.

i.e. if an adversary corrupts at most t out of n players

 [Security:] he does not learn anything about the key SK

 (and cannot forge signatures)

 [Robustness:] he cannot prevent the computation of a correct

 signature by the remaining n-t players

SK = ??

*@&$

^!*#&

SK3
SK4

SK5

SK6SK7

SK8

SK2

Applications:

Fault-Resistance

1. Roots of Trust

• Certification Authority

• Time-stamping

2. Secure Services

• Access Control

• Storage

3. Decentralized Groups

Beyond Threshold Cryptosystems

T=0 T=1 T=2

SK1

SK3 SK4
SK2

SK6

SK5

SK7
SK8

SK2 SK3 SK7 SK1 SK4 SK5 SK6

Mobile Adversary

eventually

compromises any

threshold

cryptosystem…

Fundamental Limit of Threshold Cryptosystems:

What if the adversary eventually corrupts more than t players?

Eventual corruption of all players is easier than you think:

- inevitable eventual breakdown

- periodical service / upgrades

Stronger Adversary: Mobile Adversary, who corrupts up to t

 players in every fixed time interval

…

T=0 T=1 T=2 T=3 T=4
…

SK1

SK3 SK4
SK2

SK6

SK5

SK7
SK8

Solution: Proactive Security

Main Idea: Refresh the sharing of the key between each interval

=> Secrets learned in one interval are useless in another

=> System tolerates up to t corruptions in each time interval

Adversary corrupts

up to t players

in each interval,

but proactive refresh

makes shares from

different intervals

incompatible…

SK2 SK3 SK7 SK1 SK4 SK8 SK5 SK6 SK1 SK4 SK6

Previous Work on Proactive and Threshold RSA

Threshold RSA: signing protocol is always fast (non-interactive)

! Desmedt-Frankel’90: heuristic security

! DDFY’94: secure, but O(n)-sized shares

! FGY’96, GJKR’96: extension to malicious security

! Shoup’00: O(1)-sized shares, “safe” RSA modulus

! DK’01, DD’04: larger class of RSA public keys

Proactive RSA:

! FGM’97a: combinatorial scheme

! FGM’97b: polynomial shares, re-sharing per signature

! Rabin’98: simplification of FGM’97b, interactive signing

! JS’05: reduced share sizes

Adaptive Security in Proactive RSA:

! CGJKR’99, JL’01, FMY’01, ADN’06

- Best Threshold RSA has non-interactive signing

- Best Proactive RSA has interactive (2 stage) signing

Problems with Interactive Signing of Rabin’98 (and JS’04):

Shoup ‘00N/A

??Rabin ‘98

Interactive

Signing

Non-Interactive

Signing

Proactive

Security

Only

Threshold

This

Work

! Signing in 1st round requires presence of all n players

" Protocol takes 2-rounds if one player is missing / slow

! If player is missing, his share is publicly reconstructed in 2nd round

" Communication faults are equated with malicious faults

" Much worse security in practice, where communication faults
 are much easier to induce than corruptions

" Unusable for networks where partitions are common

- e.g. Peer to peer, MANETs, sensors, and others…

[Almansa, Damgard, Nielsen ’06: 2-round, no public reconstruction*]

 (*) Remains interactive, but achieves adaptive security

• One-round signing,

 needs only t of n players

 (costs almost as Shoup’00)

• No public share

 reconstruction

• Efficient proactive

 update (as in Rabin’98)

Given RSA instance (N,e,d)

Shamir’s secret sharing modulo !(N):

! pick t-degree polynomial f s.t. d = f(0) mod!(N)

! player Pi gets a “share” di = f(i) mod!(N)

[Security: f is a t-degree poly. ! f(0) is independent from any t values of f]

! Recall polynomial interpolation (over integers):

 For any set G of t+1 indexes i, there are (rational) constants ci s.t.

! Each Pi outputs si = mdi mod N
! Compute RSA signature from si’s of any t+1 (honest) players:

! "
#=

Gi i
ifc0f)()(

]mmm[N mod ss
d ifcdcc

Gi i

iii
i

=!===
""

$$
)(

)(

Problem: Lagrange Interpolation ci constants are not integers!

ci = (#j in G j) / (#j in G j-i)

Exponentiation to fractional exponent = computing roots mod N: Hard under RSA!

Non-Interactive Signing!

N = p*q, !(N)=(p-1)(q-1)

e*d = 1 mod !(N)

PK = e, SK = d

Sign: s " md mod N

Ver.: m = se [= md*e] mod N

Threshold RSA:
[Shoup’00]

Given RSA instance (N,e,d)

Shamir’s secret sharing modulo !(N):

! pick t-degree polynomial f s.t. d = f(0) mod!(N)

! player Pi gets a “share” di = f(i) mod!(N)

! Recall polynomial interpolation (over integers):

 For any set G of t+1 indexes i, there are (rational) constants ci s.t.

! Each Pi outputs si = mdi mod N
! Compute RSA signature from si’s of any t+1 (honest) players:

N = p*q, !(N)=(p-1)(q-1)

e*d = 1 mod !(N)

PK = e, SK = d

Sign: s " md mod N

Ver.: m = se [= md*e] mod N

! "
#=

Gi i
ifc0f)()(

]mmm[N mod ss
d ifcdcc

Gi i

iii
i

=!===
""

$$
)(

)(

Problem: Lagrange Interpolation ci constants are not integers!

ci = (#j in G j) / (#j in G j-i) * L, where L=n! => ci’s are integers now!

Exponentiation to fractional exponent = computing roots mod N: Hard under RSA!

L*

L*

integer

Compute: mLd # md

If gcd(e,L)=1, use

Euclidean Algorithm to

find a,b s.t. ae + bL= 1

s = m a
 * ! b

Check:

se = mae * (mLd)be =

 = mae + Lb = m

^

Threshold RSA:
[Shoup’00]

Given RSA instance (N,e,d)

Shamir’s secret sharing modulo !(N):

! pick t-degree polynomial f s.t. d = f(0) mod!(N)

! player Pi gets a “share” di = f(i) mod!(N)

! Recall polynomial interpolation (over integers):

 For any set G of t+1 indexes i, there are (rational) constants ci s.t.

! Each Pi outputs si = mdi mod N
! Compute RSA signature from si’s of any t+1 (honest) players:

N = p*q, !(N)=(p-1)(q-1)

e*d = 1 mod !(N)

PK = e, SK = d

Sign: s " md mod N

Ver.: m = se [= md*e] mod N

! "
#=

Gi i
ifc0f)()(

]mmm[N mod ss
d ifcdcc

Gi i

iii
i

=!===
""

$$
)(

)(

Problem: Lagrange Interpolation ci constants are not integers!

ci = (#j in G j) / (#j in G j-i) * L, where L=n! => ci’s are integers now!

Exponentiation to fractional exponent = computing roots mod N: Hard under RSA!

L*

L*

integer

^

Solution #2:

• Publish si = mLdi

 instead of si = mdi

• Simulation:

 mLdi = (md)Lc0 mL(c1d1+…)

• Now ! = mL*L*d, not mL*d

• Euclidean Algorithm(!) ! md

 because gcd(e,L2)=1

Threshold RSA:
[Shoup’00]

Problem #2:

Not clear how to argue that mdi’s reveal

no additional information about d than md...

How to simulate(md , d1, …, dt) ! mdi ?

• di = c0d + c1d1+…+ctdt for Lagrange coefs. cj’s

• mdi = (md)c0 m(c1 d1 +…+ ct dt)

• But these exponents also can be fractions…

How to “Proactivize”

(Shoup’s) Threshold RSA?

Given RSA instance (N,e,d)

Shamir’s secret sharing modulo !(N):

! pick t-degree polynomial f s.t. d = f(0) mod!(N)

! player Pi gets a “share” di = f(i) mod!(N)

! Recall polynomial interpolation (over integers):

 For any set G of t+1 indexes i, there are (rational) constants ci s.t.

! Each Pi outputs si = mLdi mod N
! Compute RSA signature from si’s of any t+1 (honest) players:

! "
#=

Gi i
ifc0f)()(

]mmm[N mod ss
d ifcdcc

Gi i

iii
i

=!===
""

$$
)(

)(

L*

L2*

integer

^

Given RSA instance (N,e,d)

Shamir’s secret sharing modulo !(N):

! pick t-degree polynomial f s.t. d = f(0) mod!(N)

! player Pi gets a “share” di = f(i) mod!(N)

How to “Proactivize”

(Shoup’s) Threshold RSA?

N = p*q, !(N)=(p-1)(q-1)

e*d = 1 mod !(N)

PK = e, SK = d

Sign: s " md mod N

Ver.: m = se [= md*e] mod N

Recall: Proactive Refreshment [HJKY’95] (applied to RSA)

! Pick t-degree polynomial $ s.t. $(0) = 0 mod!(N)

! Each Pi gets an “update share” $(i) mod!(N)

! Pi re-computes share d’i " di + $(i) mod!(N)

! Note: d’i = f(i) +$(i) = f’(i) mod!(N),

 where f’ = f+$is a t-degree poly. s.t. f’(0) = f(0) = d mod!(N)

Q1: Who picks $?

A: Easy! Each Pi picks $(i), shares it, and $ = $(1) + … + $(n)

Q2: How to do share $(i) when no one knows the modulus !(N) ??

A: Not so easy…

… but achieved in [FGM97b] with secret-sharing over integers

Given secret d in [0,R]

Pick vector a = (a1,…,at) of coefficients at random in [0,…,RtL22k]

Define f(x) = Ld + a1x + … atx
t

Pi’s share: si = f(i) [over integers]

Let the set of corrupt players be {1,…,t}

Let s = (s1,…,st), w = Ld, w = (w,…,w)

Note that s = w + Ma

Security:

Compare distributions of s given w1 and w2:

 s = w1 + Ma1 = w2 + Ma2

" (w1 - w2) = M (a1 - a2)

" a1 = a2 + M(-1) (w1 - w2)

1. Why length? Since (w1 - w2) < $w < LR, and highest element in

 M(-1) is tL, the mask size should be LR· tL·2k

2. Why Ld? M(-1) has non-integer entries, but denominators divide L=n!

Shamir’s Secret-Sharing over Integers [FGMY97b]

!
!
!
!
!

"

#

$
$
$
$
$

%

&

=

k

k

k

ttt

M

K

MKMM

K

K

2

2

2

222

111

Entries of M(-1)

are similar to

Lagrange

coefficients:
#k (i-k) / (j-k)

"#Secret key d shared additively ! (d1,…,dn) s.t. d1+…+dn = d

 [this is a simplification]

$#Each di is shared using Shamir’s secret-sharing over integers

%#Proactive refresh protocol is simple:
- Each Pi shares di additively ! (di1,…,din) s.t. di1 +…+ din = di
- Each Pi sends dij to Pj
- Pj computes dj’ " d1j + d2j +… + dnj and shares it over integers

&#Signing is conceptually simple:

- Each player produces mdi

- Missing di’s are publicly reconstructed from the back-up sharings

5. However, this signing protocol is:

- interactive (unless all n players are present) and

- exposes shares (e.g. insecure if network is partitioned)

Tal Rabin’s Proactive RSA

[Rabin98]

Our Protocol: Proactive RSA with Fast Signing

"#Secret key d shared additively ! (d1,…,dn) s.t. d1+…+dn = d

 [this is a simplification]

$#Each di is shared using Shamir’s secret-sharing over integers

%#Proactive refresh protocol is simple:
- Each Pi shares di additively ! (di1,…,din) s.t. di1 +…+ din = di
- Each Pi sends dij to Pj
- Pj computes dj’ " d1j + d2j +… + dnj and shares it over integers

&#Signing is conceptually simple:

- Each player produces mdi

- Missing di’s are publicly reconstructed from the back-up sharings

5. However, this signing protocol is:

- interactive (unless all n players are present) and

- insecure if network is partitioned

&#Signing with Shamir’s secret-sharing over integers: [FGMY’97b,Rab98]

- By linearity of Shamir-SS-over-Z:

• Sharings of (d1,…,dn) imply Sharing of d = d1+…+ dn
• Shamir-SS over integers ! f(0) = Ld (instead of d)

- Signing protocol similar to Shoup’s: [Shoup’00]

• Each player produces mLdi

• Interpolation reconstructs mL d (instead of mL d)

• Euclidean Algorithm reconstructs md

3 2

Extensions:

! More exact security argument for Secret-sharing over integers

• Share size reduced to ! |N| + sec.par. + 3log(n!)

! Further extension: Getting rid of additive sharing altogether

• Proactive refresh protocol can be done by only t players

• Using verifiable encryption it can be done non-interactively

Open Questions:

! Extension to more general RSA moduli N. (Now: safe RSA modulus)

! Extension to e=3. (Now: require gcd(e,n!)=1)

! Removing the n! factor completely

• This would allow very large groups, e.g. peer-to-peer, MANETs

• Indexes could be MAC addresses instead of consecutive integers

Extensions and Open Problems

