Financial Cryptography - Jan 30, 2008

Weighing Down "The Unbearable Lightness of PIN Cracking"

Mohammad Mannan and P.C. van Oorschot

Carleton University

Mohammad Mannan __Jan 30, 2008__1

PIN processing network

PIN cracking attacks

- PIN processing APIs are decades old
 - several flaws have been uncovered
- "The Unbearable Lightness of PIN Cracking" (FC 2007) enumerates some very efficient attacks
 - we focus on the attacks outlined in this paper

Current (partial) 'solutions'

- 1. Inter-banking agreements
- 2. Restricted APIs, i.e., unnecessary APIs in an HSM are disabled
- 3. Minor fixes for specific flaws
 - new flaws emerge often
 - applying fixes to intermediate nodes is difficult

Why is any particular solution interesting?

- A challenging problem since banking network is protected with symmetric crypto
 - HSMs at intermediate nodes can 'see' everything
 - intermediate nodes are untrustworthy

Salted-PIN: motivation

- 1. Lesson from history: API flaws will persist and attacks will continue
 - we focus on minimizing information disclosure

(here customer PIN)

- 2. Current Encapsulated PIN Block (EPB) contains customer PIN
 - we propose to use secret 'salt' with the PIN

Salted-PIN: requirements

- We require updating bank cards (data), ATMs and issuer/verification HSMs
- 2. We do not require any changes to
 - intermediate nodes
 - user behaviour

Salted-PIN: setup

Verification Center

Salted-PIN: processing

• previous attacks now reveal only PIN_t

PIN_t length limitations

 \bullet may have to try ${\cal O}(2^{40})$ salt values

One variant of salted-PIN

- 1. Using 24 digits from PRF output, create two PIN_t values
- 2. Now two EPBs are required for PIN verification
- 3. Intermediate switches do not need to be aware of this
- 4. The cost of finding an appropriate salt value is now $O(2^{80})$

Concluding remarks

- 1. PIN processing APIs should be designed assuming malicious switches
- 2. Deployment barriers to salted-PIN need more study

