unrestricted

Good Variants of HB⁺ are Hard to Find (The Cryptanalysis of HB⁺⁺, HB* and HB-MP)

Henri Gilbert, Matt Robshaw, and Yannick Seurin

Financial Crypto 2008 - January 29, 2008

the context

- pervasive computing (RFID tags . . .)
- the issue: protection against duplication and counterfeiting ⇒ authentication
- pervasive = very low cost => very few gates for security
- current proposed solutions use e.g.
 - ▶ light-weight block ciphers (AES, PRESENT . . .)
 - dedicated asymmetric cryptography (GPS)
 - protocols based on abstract hash functions and PRFs
- recent proposal HB⁺ at Crypto '05 by Juels and Weis: very simple, security proof

intro | HB+ | HB-MP | HB* | HB++ | conclusion

outline

- HB⁺: strengths and weaknesses
- cryptanalysis of HB-MP
- cryptanalysis of HB*
- cryptanalysis of HB ++
- conclusions . . . and a trailer

the ancestor HB [Hopper and Blum 2001]

tag

k-bit secret vector **x**

reader

k-bit secret vector x

a

draw a random k-bit challenge **a**

compute
$$z = \mathbf{a} \cdot \mathbf{x} \oplus \mathbf{v}$$

where \mathbf{v} is a noise bit $\Pr[\mathbf{v} = 1] = \eta < \frac{1}{2}$

$$\xrightarrow{\hspace*{1cm} z}$$

check
$$z = \mathbf{a} \cdot \mathbf{x}$$

- this is repeated for r rounds
- the authentication is successful iff at most $\,t\,$ rounds have been rejected $\,(\,t>\eta\,r\,)$

the protocol HB⁺ [Juels and Weis 2005]

tag

k-bit secret vectors **x** and **y**

reader

k-bit secret vectors **x** and **y**

draw a random k-bit blinding vector **b**

$$\overset{\mathsf{b}}{-\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-}$$

a

draw a random k-bit challenge **a**

compute
$$z = \mathbf{a} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y} \oplus \mathbf{v}$$
 where $\Pr[\mathbf{v} = 1] = \eta < \frac{1}{2}$

$$z \rightarrow$$

$$\mathsf{check}\ z = \mathbf{a} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y}$$

- this is repeated for r rounds
- the authentication is successful iff at most $\,t\,$ rounds have been rejected $(\,t>\eta \,r\,)$

the protocol HB⁺

- typical parameter values are:
 - $k \simeq 250$ (length of the secret vectors)
 - \rightarrow $\eta \simeq 0.125$ to 0.25 (noise level)
 - ho r $\simeq 80$ (number of rounds)
 - $t \simeq 30$ (acceptance threshold)
- necessary trade-off between false acceptance rate, false rejection rate and efficiency

distribution of the number of errors

the security of HB⁺

- HB is provably secure against passive (eavesdropping) attacks
- HB⁺ is provably secure against *active* (in some sense) attacks
- the security relies on the hardness of the Learning from Parity with Noise (LPN) problem:

```
Given q noisy samples (\textbf{a_i}, \textbf{a_i} \cdot \textbf{x} \oplus \nu_i), where \textbf{x} is a secret k-bit vector and Pr[\nu_i = 1] = \eta, find \textbf{x}.
```

- similar to the problem of decoding a random linear code (NP-complete)
- best solving algorithms require T, $q = 2^{\Theta(k/\log(k))}$: BKW [2003], LF [2006]
- numerical examples:
 - for k=512 and $\eta=0.25$, LF requires $q\simeq 2^{89}$
 - for k=768 and $\eta=0.01$, LF requires $q\simeq 2^{74}$

- passive attacks: the adversary can only eavesdrop the conversations between an honest tag and an honest reader, and then tries to impersonate the tag
- active attacks on the tag only (a.k.a. active attacks in the detection model): the adversary first interact with an honest tag (actively, but without access to the reader), and then tries to impersonate the tag
- man-in-the-middle attacks (a.k.a. active attacks in the prevention model): the adversary can manipulate the tag-reader conversation and observe whether the authentication is successful or not

	passive	active (TAG)	active (MIM)
HB	OK	KO	KO
HB ⁺	OK	OK	KO

a man-in-the-middle attack against HB⁺ [GRS 2005]

tag

k-bit secret vectors **x** and **y**

reader

k-bit secret vectors **x** and **y**

draw a random k-bit blinding vector **b**

draw a random k-bit challenge **a**

compute
$$z'=\mathbf{a}'\cdot\mathbf{x}\oplus\mathbf{b}\cdot\mathbf{y}\oplus\mathbf{v}$$
 where $\Pr[\mathbf{v}=1]=\eta<\frac{1}{2}$

$$\xrightarrow{\hspace*{1cm}z'}$$

check
$$z' = \mathbf{a} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y}$$

accept?
$$\rightarrow \delta \cdot \mathbf{x} = 0$$
 reject? $\rightarrow \delta \cdot \mathbf{x} = 1$

a at each round, the noise bit v_i is replaced by $v_i \oplus \delta \cdot \mathbf{x}$

a man-in-the-middle attack against HB⁺ [GRS 2005]

9

- one authentication enables to retrieve one bit of x
- repeating the procedure with $|\mathbf{x}|$ linearly independent δ 's enables to derive \mathbf{x}
- impersonating the tag is then easy (use b = 0)
- note that the authentication fails \simeq half of the time: this may raise an alarm (hence the name detection-based model)

distribution of the number of errors

we need a variant of HB⁺ resisting MIM attacks

- three recent proposals:
 - ► HB-MP
 - ► HB *
 - ► HB ⁺⁺
- we show how to cryptanalyse them

cryptanalysis of HB-MP

- HB-MP was introduced by Munilla and Peinado
- aim: obtain a more simple (2-pass) protocol but at least as secure as HB⁺
- however, there is a passive attack against HB-MP
- please see the paper for the details

HB* [Duc and Kim 2007]

tag

k-bit secret vectors **x**, **y** and **s**

reader

k-bit secret vectors **x**, **y** and **s**

$$\begin{array}{c} \text{draw a random } \boldsymbol{b} \in_{R} \{0,1\}^{k} \\ \text{draw } \boldsymbol{\gamma} \in_{R} \{0,1\} \,|\, \Pr[\boldsymbol{\gamma}=1] = \boldsymbol{\eta}' \quad \xrightarrow{(\boldsymbol{b},w)} \\ \text{compute } \boldsymbol{w} = \boldsymbol{b} \cdot \boldsymbol{s} \oplus \boldsymbol{\gamma} \end{array}$$

 $\frac{\mathbf{a}}{\mathbf{b}}$ draw a random $\mathbf{a} \in_{\mathbb{R}} \{0, 1\}^k$

$$z = \mathbf{a} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y} \oplus \mathbf{v}$$
 else compute $z = \mathbf{a} \cdot \mathbf{y} \oplus \mathbf{b} \cdot \mathbf{x} \oplus \mathbf{v}$

- this is repeated for r rounds
- the authentication is successful iff at most t rounds have been rejected

a MIM attack on HB*

- try the GRS attack: add a constant δ to the challenges **a**; then:
- if η' is to low, most of rounds will use equation $\mathbf{a} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y}$: this is equivalent to HB $^+$ (true when $\eta' \leqslant \frac{t \eta r}{r(1 2\eta)}$)
- conversely, if η' is close to 1/2, the following will happen:
 - if $\delta \cdot \mathbf{x} = 0$ and $\delta \cdot \mathbf{y} = 0$ then the reader will accept
 - in all other cases the reader will reject ($\delta \cdot \mathbf{x} = 1$ or $\delta \cdot \mathbf{y} = 1$)
 - hence the adversary is able to learn the vector space $\langle \mathbf{x}, \mathbf{y} \rangle$

a MIM attack on HB*

- the attack proceeds as follows:
 - find lin. ind. values $\delta_1, \ldots, \delta_{k-2}$ such that the authentication succeeds
 - with overwhelming probability this gives the unordered set $\{c_1, c_2, c_3\} = \{x, y, x \oplus y\}$
 - identify $\mathbf{x} \oplus \mathbf{y}$ in $\{\mathbf{c_1}, \mathbf{c_2}, \mathbf{c_3}\}$ by querying the honest tag with $\mathbf{a} = \mathbf{b}$ at each round $\Rightarrow z = \mathbf{a} \cdot (\mathbf{x} \oplus \mathbf{y}) \oplus \gamma$
 - ▶ first impersonation succeeds with proba 1/2
 - following impersonations succeed with proba 1
- linear complexity: O(4k) authentications are required

HB⁺⁺ [Bringer, Chabanne, and Dottax 2005]

tag

k-bit session secret vectors \mathbf{x} , \mathbf{y} , \mathbf{x}' , \mathbf{y}'

reader

k-bit session secret vectors **x**, **y**, **x**', **y**'

draw a random
$$\mathbf{b} \in_{\mathbb{R}} \{0,1\}^k$$
 $\xrightarrow{\mathbf{a}}$ draw a random $\mathbf{a} \in_{\mathbb{R}} \{0,1\}^k$

compute
$$z = \mathbf{a} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y} \oplus \mathbf{v}$$
 check and
$$z' = (\mathbf{f}(\mathbf{a})^{\ll \mathbf{i}}) \cdot \mathbf{x}' \oplus (\mathbf{f}(\mathbf{b})^{\ll \mathbf{i}}) \cdot \mathbf{y}' \oplus \mathbf{v}'$$

$$z = \mathbf{a} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y} \text{ and }$$

$$z' = (\mathbf{f}(\mathbf{a})^{\ll \mathbf{i}}) \cdot \mathbf{x}' \oplus (\mathbf{f}(\mathbf{b})^{\ll \mathbf{i}}) \cdot \mathbf{y}'$$

- this is repeated for r rounds
- let N (resp. N') be the number of errors on z (resp. z'), the authentication is successful iff N \leq t and N' \leq t

HB⁺⁺ [Bringer, Chabanne, and Dottax 2005]

- uses a k-bit to k-bit permutation f made of a layer of 5-bit S-box S to compute the second response bit $z' = (f(\mathbf{a})^{\ll i}) \cdot \mathbf{x}' \oplus (f(\mathbf{b})^{\ll i}) \cdot \mathbf{y}'$
- the secrets \mathbf{x} , \mathbf{y} , \mathbf{x}' , \mathbf{y}' are renewed before each authentication with a master secret **Z** and a universal hash function h

tag

K -bit master secret **Z**

reader

IHB++

K-bit master secret **Z**

draw a random
$$\mathbf{B} \in_{\mathbb{R}} \{0,1\}^{K'}$$
 \leftarrow
 \leftarrow
 \mathbf{A}

draw a random $\mathbf{A} \in_{\mathbb{R}} \{0,1\}^{K'}$

compute

 $(\mathbf{x}, \mathbf{v}, \mathbf{x}', \mathbf{v}') = h(\mathbf{Z}, \mathbf{A}, \mathbf{B})$
 $(\mathbf{x}, \mathbf{v}, \mathbf{x}', \mathbf{v}') = h(\mathbf{Z}, \mathbf{A}, \mathbf{B})$

Financial Crypto 2008 - Y. Seurin 16 Orange Labs

a MIM attack on HB⁺⁺: phase 1

- aims at gathering approximate equations on (a subset of the bits of) x
- ullet a simple GRS attack fails: the error vector on z_i' is

$$\mathbf{v}_{\mathbf{i}}' \oplus (f(\mathbf{a_i} \oplus \delta) \oplus f(\mathbf{a_i}))^{\ll i} \cdot \mathbf{x}$$

- \Rightarrow randomized, hence $N' \simeq r/2$ and the reader always rejects
- however, what happens if one disturbs s < r rounds?

a MIM attack on HB⁺⁺: phase 1

- if s is to low, the distributions of N when $\delta \cdot \mathbf{x} = 0$ and when $\delta \cdot \mathbf{x} = 1$ are not well distributed around t
- if s is to high, the expected value of N' is to high and the reader always rejects
- but for s such that $E(N') \simeq t$, it's OK!
- when the reader accepts (p = 1/4), $\delta \cdot \mathbf{x} = 0$ with high probability

a MIM attack on HB⁺⁺: phase 2

- getting into the details of h(Z, A, B):
 - $ightharpoonup Z = (Z_1, ..., Z_{48})$: 48 16-bit words = 768 bits in total
 - $M = (A, B) = (M_1, ..., M_{10})$: 10 16-bit words = 160 bits in total
 - $\begin{array}{l} \blacktriangleright \ h(\mathbf{Z},\mathbf{A},\mathbf{B}) = (\mathbf{x},\mathbf{y},\mathbf{x}',\mathbf{y}') \\ = (g_{Z_1...Z_{10}}(\mathbf{M}),g_{Z_3...Z_{13}}(\mathbf{M}),\ldots,g_{Z_{39}...Z_{48}}(\mathbf{M})) : 20 \ 16\text{-bit words} \end{array}$
- if (A, B) is known, each of these 20 16-bit words is an affine function of 160 Z bits and 80 quadratic functions of Z bits = 240 expanded key bits
- thanks to the approximate equations of phase 1, solve an LPN problem with key length 240 and low noise parameter

a MIM attack on HB⁺⁺: summary

- step 1: disturb the authentication protocol with δ 's affecting one single 16-bit word of \mathbf{x} and get approximate equations on the secret bits allowing to derive $\mathbf{x} \Rightarrow 5$ LPN problems to solve
- step 2: derive the expanded key bits allowing to derive x' (5 additional LPN problems)
- step 3: impersonate the tag by reusing previous blinding vectors b
- complexity estimate: for for $k=80, r=80, \eta=0.25, t=30$, by disturbing s=40 rounds, $4\times10\times2^{30}\simeq2^{35}$ authentications needed

conclusions...

	passive	active (TAG)	active (MIM)
HB	OK	KO	KO
HB ⁺	OK	OK	KO
HB-MP	KO	KO	KO
HB*	OK	OK	KO
HB ++	OK	OK	KO
?	OK	OK	OK

- HB⁺ remains the most attractive member of the family...
- but still has some practical problems: MIM attack, high communication complexity (50 to 100 Kbit / auth.)
- a (simple) variant resistant to MIM attacks would be highly interesting

...and a trailer

- introducing: HB[#] [Gilbert, Robshaw, and Seurin, Eurocrypt 2008]
- main idea: generalize the form of the secrets from vectors to matrices
- main advantages: reduced communication complexity, provable security against a large class of MIM attacks
- drawback: more storage required, but remains practical
- see you in Istanbul for more details ;-) (in the meanwhile, the paper is available on e-print)

thanks for your attention!

questions?