Good Variants of HB^{+}are Hard to Find (The Cryptanalysis of $\mathrm{HB}^{++}, H B^{*}$ and $\mathrm{HB}-\mathrm{MP}$)

Henri Gilbert, Matt Robshaw, and Yannick Seurin

Financial Crypto 2008 - January 29, 2008
\&

the context

- pervasive computing (RFID tags ...)
- the issue: protection against duplication and counterfeiting \Longrightarrow authentication
- pervasive $=$ very low cost \Longrightarrow very few gates for security
- current proposed solutions use e.g.
- light-weight block ciphers (AES, PRESENT . . .)
- dedicated asymmetric cryptography (GPS)
- protocols based on abstract hash functions and PRFs
- recent proposal HB^{+}at Crypto '05 by Juels and Weis: very simple, security proof

outline

- HB^{+}: strengths and weaknesses
- cryptanalysis of HB-MP
- cryptanalysis of HB *
- cryptanalysis of HB^{++}
- conclusions . . . and a trailer

the ancestor HB [Hopper and Blum 2001]

a
draw a random k-bit challenge a
compute $z=\mathbf{a} \cdot \mathbf{x} \oplus v$ where v is a noise bit \qquad check $z=\mathbf{a} \cdot \mathbf{x}$

$$
\operatorname{Pr}[v=1]=\eta<\frac{1}{2}
$$

- this is repeated for r rounds
- the authentication is successful iff at most t rounds have been rejected ($t>\eta r$)

the protocol HB^{+}[Juels and Weis 2005]

tag
k-bit secret vectors \mathbf{x} and \mathbf{y}

reader
 k-bit secret vectors \mathbf{x} and \mathbf{y}

draw a random
k-bit blinding vector b

a

draw a random k-bit challenge a
check $z=\mathbf{a} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y}$
compute $z=\mathbf{a} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y} \oplus v$ where $\operatorname{Pr}[v=1]=\eta<\frac{1}{2}$
-

- this is repeated for r rounds
- the authentication is successful iff at most t rounds have been rejected ($\mathrm{t}>\mathrm{\eta r}$)

the protocol HB^{+}

- typical parameter values are:
- $k \simeq 250$ (length of the secret vectors)
- $\eta \simeq 0.125$ to 0.25 (noise level)
- $\mathrm{r} \simeq 80$ (number of rounds)
- $\mathrm{t} \simeq 30$ (acceptance threshold)
- necessary trade-off between false acceptance rate, false rejection rate and efficiency
honest
tag

the security of HB^{+}

- HB is provably secure against passive (eavesdropping) attacks
- HB^{+}is provably secure against active (in some sense) attacks
- the security relies on the hardness of the Learning from Parity with Noise (LPN) problem:

$$
\begin{array}{|l}
\hline \text { Given q noisy samples }\left(\mathbf{a}_{\mathbf{i}}, \mathbf{a}_{\mathbf{i}} \cdot \mathbf{x} \oplus v_{i}\right) \text {, where } \mathbf{x} \text { is } \\
\text { a secret } k \text {-bit vector and } \operatorname{Pr}\left[v_{i}=1\right]=\eta \text {, find } \mathbf{x} \text {. } \\
\hline
\end{array}
$$

- similar to the problem of decoding a random linear code (NP-complete)
- best solving algorithms require $T, q=2^{\Theta(k / \log (k))}$: BKW [2003] , LF [2006]
- numerical examples:
- for $k=512$ and $\eta=0.25$, LF requires $q \simeq 2^{89}$
- for $k=768$ and $\eta=0.01$, LF requires $q \simeq 2^{74}$

security models

- passive attacks: the adversary can only eavesdrop the conversations between an honest tag and an honest reader, and then tries to impersonate the tag
- active attacks on the tag only (a.k.a. active attacks in the detection model): the adversary first interact with an honest tag (actively, but without access to the reader), and then tries to impersonate the tag
- man-in-the-middle attacks (a.k.a. active attacks in the prevention model): the adversary can manipulate the tag-reader conversation and observe whether the authentication is successful or not

	passive	active (TAG)	active (MIM)
HB	OK	KO	KO
HB^{+}	OK	OK	KO

a man-in-the-middle attack against HB ${ }^{+}$[GRS 2005]

draw a random
k-bit blinding vector b

$$
\stackrel{\mathbf{a}^{\prime}=\mathbf{a} \oplus \delta}{\longleftarrow} \text { Adv! } \stackrel{\mathbf{a}}{\longleftarrow}
$$

draw a random k-bit challenge a
compute
$z^{\prime}=\mathbf{a}^{\prime} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y} \oplus v$ \qquad check $z^{\prime}=\mathbf{a} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y}$
where $\operatorname{Pr}[v=1]=\eta<\frac{1}{2}$

$$
\begin{gathered}
\text { accept? } \rightarrow \delta \cdot \mathbf{x}=0 \\
\text { reject? } \rightarrow \delta \cdot \mathbf{x}=1
\end{gathered}
$$

- at each round, the noise bit v_{i} is replaced by $\nu_{i} \oplus \delta \cdot \mathbf{x}$

a man-in-the-middle attack against HB ${ }^{+}$[GRS 2005]

- one authentication enables to retrieve one bit of \mathbf{x}
- repeating the procedure with $|\mathbf{x}|$ linearly independent δ 's enables to derive \mathbf{x}
- impersonating the tag is then easy (use $\mathbf{b}=\mathbf{0}$)
- note that the authentication fails \simeq half of the time: this may raise an alarm (hence the name detection-based model)

we need a variant of HB^{+}resisting MIM attacks

- three recent proposals:
- HB-MP
- HB*
- HB^{++}
- we show how to cryptanalyse them

cryptanalysis of HB-MP

- HB-MP was introduced by Munilla and Peinado
- aim: obtain a more simple (2-pass) protocol but at least as secure as HB^{+}
- however, there is a passive attack against HB-MP
- please see the paper for the details

HB * [Duc and Kim 2007]

reader
 k-bit secret vectors
 \mathbf{x}, \mathbf{y} and \mathbf{s}

draw a random $\mathbf{b} \in_{R}\{0,1\}^{k}$ draw $\gamma \in_{R}\{0,1\} \mid \operatorname{Pr}[\gamma=1]=\eta^{\prime} \xrightarrow{(\mathbf{b}, w)}$ compute $w=\mathbf{b} \cdot \mathbf{s} \oplus \gamma$
$\stackrel{\mathbf{a}}{\longleftrightarrow} \quad$ draw a random $\mathbf{a} \in_{\mathrm{R}}\{0,1\}^{\mathrm{k}}$

$$
\begin{gathered}
\text { if } \gamma=0 \text { compute } \\
z=\mathbf{a} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y} \oplus v
\end{gathered}
$$

else compute $z=\mathbf{a} \cdot \mathbf{y} \oplus \mathbf{b} \cdot \mathbf{x} \oplus v$
if $\mathbf{b} \cdot \mathbf{s}=\mathbf{w}$ check $z=\mathbf{a} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y}$ else check $z=\mathbf{a} \cdot \mathbf{y} \oplus \mathbf{b} \cdot \mathbf{x}$

- this is repeated for r rounds
- the authentication is successful iff at most t rounds have been rejected

a MIM attack on HB*

- try the GRS attack: add a constant δ to the challenges a; then:
- if η^{\prime} is to low, most of rounds will use equation $\mathbf{a} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y}$: this is equivalent to HB^{+}(true when $\eta^{\prime} \leqslant \frac{t-\eta r}{r(1-2 \eta)}$)
- conversely, if η^{\prime} is close to $1 / 2$, the following will happen:
- if $\delta \cdot \mathbf{x}=0$ and $\delta \cdot \mathbf{y}=0$ then the reader will accept
- in all other cases the reader will reject ($\delta \cdot \mathbf{x}=1$ or $\delta \cdot \mathbf{y}=1$)
- hence the adversary is able to learn the vector space $\langle\mathbf{x}, \mathbf{y}\rangle$

a MIM attack on HB*

- the attack proceeds as follows:
- find lin. ind. values $\delta_{1}, \ldots, \delta_{k-2}$ such that the authentication succeeds
- with overwhelming probability this gives the unordered set $\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{c}_{3}\right\}=\{\mathbf{x}, \mathbf{y}, \mathbf{x} \oplus \mathbf{y}\}$
- identify $\mathbf{x} \oplus \mathbf{y}$ in $\left\{\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}, \mathbf{c}_{\mathbf{3}}\right\}$ by querying the honest tag with $\mathbf{a}=\mathbf{b}$ at each round $\Rightarrow z=\mathbf{a} \cdot(\mathbf{x} \oplus \mathbf{y}) \oplus v$
- first impersonation succeeds with proba $1 / 2$
- following impersonations succeed with proba 1
- linear complexity: $\mathrm{O}(4 \mathrm{k})$ authentications are required

HB^{++}[Bringer, Chabanne, and Dottax 2005]

tag
k-bit session secret vectors
$\mathbf{x}, \mathbf{y}, \mathbf{x}^{\prime}, \mathbf{y}^{\prime}$
:---:
k -bit session secret vectors
$\mathbf{x}, \mathbf{y}, \mathbf{x}^{\prime}, \mathbf{y}^{\prime}$

draw a random $\mathbf{b} \in_{R}\{0,1\}^{k}$ \qquad
$\stackrel{a}{ }$
draw a random $\mathbf{a} \in_{R}\{0,1\}^{k}$
compute $z=\mathbf{a} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y} \oplus v$
$\xrightarrow{\left(z, z^{\prime}\right)}$

$$
\begin{gathered}
\text { check } \\
z=\mathbf{a} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y} \text { and }
\end{gathered}
$$

$$
z^{\prime}=\left(f(\mathbf{a})^{\ll i}\right) \cdot \mathbf{x}^{\prime} \oplus\left(f(\mathbf{b})^{\ll i}\right) \cdot \mathbf{y}^{\prime} \oplus v^{\prime} \quad z^{\prime}=\left(f(\mathbf{a})^{\ll i}\right) \cdot \mathbf{x}^{\prime} \oplus\left(\mathrm{f}(\mathbf{b})^{<i}\right) \cdot \mathbf{y}^{\prime}
$$

- this is repeated for r rounds
- let N (resp. N^{\prime}) be the number of errors on z (resp. z^{\prime}), the authentication is successful iff $N \leqslant t$ and $N^{\prime} \leqslant t$

HB^{++}[Bringer, Chabanne, and Dottax 2005]

- uses a k-bit to k-bit permutation f made of a layer of 5 -bit S-box S to compute the second response bit $z^{\prime}=\left(f(\mathbf{a})^{\ll i}\right) \cdot \mathbf{x}^{\prime} \oplus\left(f(\mathbf{b})^{\ll i}\right) \cdot \mathbf{y}^{\prime}$
- the secrets $\mathbf{x}, \mathbf{y}, \mathbf{x}^{\prime}, \mathbf{y}^{\prime}$ are renewed before each authentication with a master secret \mathbf{Z} and a universal hash function h

draw a random $\mathbf{B} \in_{R}\{0,1\}^{K^{\prime}}$
compute
$\left(\mathbf{x}, \mathbf{y}, \mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right)=\mathrm{h}(\mathbf{Z}, \mathbf{A}, \mathbf{B})$
$\longleftarrow \mathbf{A} \quad$ draw a random $\mathbf{A} \in_{R}\{0,1\}^{K^{\prime}}$
reader
K -bit master secret Z

$$
\begin{gathered}
\text { compute } \\
\left(\mathbf{x}, \mathbf{y}, \mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right)=\mathrm{h}(\mathbf{Z}, \mathbf{A}, \mathbf{B})
\end{gathered}
$$

a MIM attack on HB^{++}: phase 1

- aims at gathering approximate equations on (a subset of the bits of) \mathbf{x}
- a simple GRS attack fails: the error vector on z_{i}^{\prime} is

$$
v_{i}^{\prime} \oplus\left(f\left(\mathbf{a}_{\mathbf{i}} \oplus \delta\right) \oplus f\left(\mathbf{a}_{\mathbf{i}}\right)\right)^{\ll i} \cdot \mathbf{x}
$$

\Rightarrow randomized, hence $\mathrm{N}^{\prime} \simeq \mathrm{r} / 2$ and the reader always rejects

- however, what happens if one disturbs $s<r$ rounds?

a MIM attack on HB^{++}: phase 1

- if s is to low, the distributions of N when $\delta \cdot \mathbf{x}=0$ and when $\delta \cdot \mathbf{x}=1$ are not well distributed around t
- if s is to high, the expected value of N^{\prime} is to high and the reader always rejects
- but for s such that $E\left(N^{\prime}\right) \simeq t$, it's $O K$!
- when the reader accepts ($p=1 / 4$), $\delta \cdot \mathbf{x}=0$ with high probability

- example: for $k=80, r=80, \eta=0.25$, $t=30$, by disturbing $s=40$ rounds, $\operatorname{Pr}[f a l s e ~ g u e s s] \simeq 0.01$

a MIM attack on HB^{++}: phase 2

- getting into the details of $h(\mathbf{Z}, \mathbf{A}, \mathbf{B})$:
- $\mathbf{Z}=\left(\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{48}\right): 48$ 16-bit words $=768$ bits in total
- $\mathbf{M}=(\mathbf{A}, \mathbf{B})=\left(\mathbf{M}_{1}, \ldots, \mathbf{M}_{10}\right): 10$ 16-bit words $=160$ bits in total
- $h(\mathbf{Z}, \mathbf{A}, \mathbf{B})=\left(\mathbf{x}, \mathbf{y}, \mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right)$
$=\left(g_{Z_{1} \ldots \mathrm{Z}_{10}}(\mathbf{M}), \mathrm{g}_{\mathrm{Z}_{3} \ldots \mathrm{Z}_{13}}(\mathbf{M}), \ldots, \mathrm{g}_{39} \ldots \mathrm{Z}_{48}(\mathbf{M})\right): 20$ 16-bit words
- if (\mathbf{A}, \mathbf{B}) is known, each of these 20 16-bit words is an affine function of $160 \mathbf{Z}$ bits and 80 quadratic functions of \mathbf{Z} bits $=240$ expanded key bits
- thanks to the approximate equations of phase 1, solve an LPN problem with key length 240 and low noise parameter

a MIM attack on HB^{++}: summary

- step 1: disturb the authentication protocol with δ 's affecting one single 16-bit word of \mathbf{x} and get approximate equations on the secret bits allowing to derive $\mathbf{x} \Rightarrow 5$ LPN problems to solve
- step 2: derive the expanded key bits allowing to derive \mathbf{x}^{\prime} (5 additional LPN problems)
- step 3: impersonate the tag by reusing previous blinding vectors b
- complexity estimate: for for $k=80, r=80, \eta=0.25, t=30$, by disturbing $s=40$ rounds, $4 \times 10 \times 2^{30} \simeq 2^{35}$ authentications needed

conclusions . . .

	passive	active (TAG)	active (MIM)
HB	OK	KO	KO
HB^{+}	OK	OK	KO
$\mathrm{HB}^{+} \mathrm{MP}$	KO	KO	KO
HB^{*}	OK	OK	KO
HB^{++}	OK	OK	KO
$?$	OK	OK	OK

- HB^{+}remains the most attractive member of the family...
- but still has some practical problems: MIM attack, high communication complexity (50 to 100 Kbit / auth.)
- a (simple) variant resistant to MIM attacks would be highly interesting

...and a trailer

- introducing: HB \# [Gilbert, Robshaw, and Seurin, Eurocrypt 2008]
- main idea: generalize the form of the secrets from vectors to matrices
- main advantages: reduced communication complexity, provable security against a large class of MIM attacks
- drawback: more storage required, but remains practical
- see you in Istanbul for more details ;-) (in the meanwhile, the paper is available on e-print)

thanks for your attention!

questions?

