Generalized Non-interactive Oblivious Transfer Using Count-limited Objects With Applications To Secure Mobile Agents

Vandana Gunupudi

University of North Texas

Stephen R. Tate

University of North Carolina at Greensboro

Financial Crypto 2008

Overview

- Motivation: Mobile agents
- Oblivious Transfer (Interactive and non-interactive)
- Trusted Platform Modules and clobs
- Generalized non-interactive OT (GNIOT)
 - Problem and solution
 - Theorems and proofs
- GTX protocol
- Some Experimental Results

Motivation: Mobile Agents

- Code and data that migrates within a network and performs autonomous execution at each host
 - Typical agent example: comparison-shopping agent
 - can carry sensitive information like credit card numbers
 - Typically, agent owner (originator) encapsulates agent with required data and functionality
 - Mobile agent performs computations at each host and returns to originator
- Security issues:
 - Protecting host from malicious agents
 - Protecting agent from malicious hosts
 - Various solutions based on Secure Function Evaluation (SFE)

Financial Crypto 2008

2-party Secure Function Evaluation [Yao 1986]

- Two parties evaluate a function such that each party behaves honestly and learns nothing more than it is entitled to.
 - Inputs: Alice holds value a Bob holds value b
 - \square Computation: Compute $f(a,b) \rightarrow (A,B)$
 - Output: Alice gets A Bob gets B
- Security:
 - Alice learns no more about B than follows from a and A
 - Bob learns no more about A than follows from b and B
- How does Bob get his input?
 - Bob gets encrypted input bit-by-bit from Alice by using 1-out-of-2 OT

Impossibility in the Standard Model

- Once Bob receives Alice's published values, takes a "snapshot" of his state
- Next picks c=0 and computes s₀
- Then "rolls back" state to earlier snapshot
- Picks c=1 and computes s₁

Key Point: In the standard model, a party can completely examine and manipulate (restore) it's own state.

Note: An earlier "non-interactive" OT (Bellare and Micali) was very different - Bob didn't get to make a choice and received a randomly selected s_c .

Financial Crypto 2008

Hardware Extensions to the Rescue!

- "Trusted Computing" initiative
 - Spearheaded by the Trusted Computing Group
 - Hardware (Trusted Platform Modules) becoming more common
- Among other capabilities, a TPM:
 - Manages and controls use of keys
 - Supports a Monotonic Counter
 - After an increment, can never be reset
 - State that can't be restored!
- Note: We don't need other features of TPMs
- Can use smart-cards or any crypto processors that control key usage

Virtual Monotonic Counters (Sarmenta et al. 2006)

- Large number of counters that can be:
 - Initialized
 - Incremented
 - Cannot be reset to any previous value
- Count –Limited Objects (Keys)
 - Objects that can only be used a limited number of times
 - Each clob linked to a dedicated virtual monotonic counter to track usage
 of the clob
 - Examples: n-time-use delegated signing/encryption keys
- Our applications of clobs
 - Non-interactive form of Oblivious Transfer

Financial Crypto 2008

Non-interactive OT (with clobs)

- Obvious use for 1-out-of-2 OT:
 - $\ \square$ Bob (with access to a TPM) generates a 1-time use keypair (K_{p},K_{s})
 - \Box Sends K_p to Alice with certificate
 - \Box Alice verifies clob and encrypts both values with K_p
 - Bob can decrypt only 1 value (TPM enforces this)
- Problem:
 - Many applications (e.g., SFE) require multiple OTs
 - We need a separate clob for each value, and multiple key generations (expensive!)
- Our solution: Uses a single clob for multiple, general OTs

Our Contributions

- Definition of "Generalized Non-interactive Oblivious Transfer"
- An efficient implementation of GNIOT for TPM-enhanced models
- Careful security analysis and rigorous proofs of our implementation
- Use of the GNIOT primitive to create a new non-interactive, secure agent protocol

Generalized Non-interactive OT

- Setup Phase: K_p and K_s public/secret key info $(\mathcal{K}_p, \mathcal{K}_s) \leftarrow \mathit{Setup}(1^{\lambda})$
- Transmit phase: n independent $k_i out of m_i$ OTs

$$x_{i,j} \;\; i \; \in \;\; \{1,2,\cdots,n\}$$
 and $j \in \{1,2,\cdots,m_i\}$

$$C \leftarrow Transmit_{\mathcal{K}_p} \left(\begin{array}{c} \langle k_1, x_{1,1}, x_{1,2}, \cdots, x_{1,m_1} \rangle , \\ \langle k_2, x_{2,1}, x_{2,2}, \cdots, x_{2,m_2} \rangle , \\ \vdots \\ \langle k_n, x_{n,1}, x_{n,2}, \cdots, x_{n,m_n} \rangle \end{array} \right)$$

Decrypt Phase

$$(t_k, \mathcal{S}_k) \leftarrow Decrypt_{\mathcal{K}_s}(\mathcal{S}_{k-1}, C, i_k, j_k)$$
 for $k = 1, 2, \dots, q$ for some number of queries q
 $(i_k, j_k) \leftarrow ind(t_k)$

Post Process phase:

$$\langle v_1, v_2, \dots, v_q \rangle \leftarrow PostProcess(t_1, t_2, \dots, t_q)$$

Our TPM-based scheme

Setup Phase.: Bob creates an N-time use count limited key pair (K_p, K_s) , where $N = (k_1 + k_2 + \cdots + k_n)$.

Transmit Phase: $R = R_1 \oplus R_2 \oplus \cdots \oplus R_n$ each i we compute m_i shares of each R_i denote the shares of R_i by $f_i(j)$, for $j = 1, \ldots, m_i$ $C_{i,j} = \mathcal{PKE}_{K_n}(\langle \mathcal{SKE}_R(x_{i,j}), f_i(j) \rangle)$.

Decrypt Phase: $Decrypt_{\mathcal{K}_s}(\mathcal{S}, C, i_k, j_k)$ then just uses \mathcal{K}_s to decrypt C_{i_k, j_k} ,

$$t_k = \langle i_k, j_k, \mathcal{SKE}_R(x_{i_k, j_k}), f_{i_k}(j_k) \rangle$$
.

- PostProcess: Reconstruct R and decrypt t_k values
- Index set: set of indices (i,j) $I(i) = \{j \mid (i, j) \in I\}$
- Well formed index set: $|I(i)| = k_i \forall i \in \{1, \dots n\}$

Financial Crypto 2008

GNIOT Game

Adversary A supplies plaintext input where each input has 2 possibilities: $x_{i,i}^0$, $x_{i,j}^1$ for i=1,2,...n and $j=1,2,...m_i$

Oracle generates an independent random bit $r_{i,j} \in_{\mathbb{R}} \{0,1\}$ for each pair.

Oracle creates a single input X using $x_{i,j}^{r_{i,j}}$ and calls the Transmit function which returns C.

A makes a series of calls to the Decrypt function which returns t_1, t_2, \dots, t_q .

A is free to make calls to the PostProcess function.

Finally, A outputs a guess g and an index (a,b).

A wins the game if $g = r_{a.b}$. Formally,

$$Adv_{GNIOT,\mathcal{A}} = \left| Pr[g = r_{a,b} | (a,b) \not\in \mathcal{I} \text{ or } \mathcal{I} \text{ not well-formed}] - \frac{1}{2} \right|.$$

Security Analysis

THEOREM 5.3. If PKE is an IND-CCA2 secure public key scheme and SKE is a IND-CCA2 secure symmetric cipher, then the GNIOT game can be won by a probabilistic, polynomial time adversary A if and only if \mathcal{I} is a well formed index set and $(a,b) \in \mathcal{I}$.

- Similar to "hybrid encryption" (Public key + symmetric cipher)
 - Hybrid encryption proofs due to [Cramer and Shoup, 1998]
 - Proof: Composition of secure components is secure
 - Proof is broken into 3 cases

Financial Crypto 2008

Proof

Case 0 $(a,b) \in \mathcal{I}$, and \mathcal{I} is a well-formed index set.

If you follow the rules, you win the game

Case 1 $(a,b) \notin \mathcal{I}$, where \mathcal{I} is a well-formed index set.

- Adversary A: PPT machine playing GNIOT game
- Construct Adversary A' playing the standard PKE game
 GNIOT Game/Oracle

Proof Sketch for Case 1

- Basic Idea: Treat as multiple PKE (CCA2) games, and guess which one really "counts"
- Step 1 (setup): Get public key from PKE oracle and generate R (and shares)
- Step 2 (send): \mathcal{A} passes to \mathcal{A}' : $x_{i,i}^0$ for i = 1, 2, ..., n and $j = 1, 2, ..., m_i$
- Step 3: A' creates C for A?: Pick an index (a,b) at random
 - □ For all $(i,j) \neq (a,b)$:
 - Pick random r_{ij} and compute PKE.Encrypt(SKE_R(x_{ij}^{rij}), $f_i(j)$) [this is c_{ij}]
 - For index (a,b):
 - Submit (SKE_R(x⁰_{a,b}),f_i(j)) and (SKE_R(x¹_{a,b}),f_i(j)) to PKE oracle which returns encryption of one of these values [this is c_{ab}].
 - \Box C is collection of all c_{ii} 's

Financial Crypto 2008

Proof Sketch for Case 1 - cont'd

- How does A' handle decryption requests from A?
 - □ If $(i,j) \neq (a,b)$, then \mathcal{A}' processes decryption query correctly
 - □ Else: A' loses the game
- Finally, A outputs (a',b') and guess g
 - □ If $(a',b') \neq (a,b)$, then \mathcal{A}' loses PKE game
 - $\ \square$ Else \mathcal{A}' outputs g as its guess in the PKE game

Proof Sketch continued

Probability bounds for A winning the GNIOT game:

- A' wins the game if and only if
 - (a,b) = (a',b') [which occurs with probability 1/N], and
 - A wins the GNIOT game

So:

$$\Pr[A' \text{ wins}] = (1/N) \cdot \Pr[A \text{ wins}]$$

 $\Pr[A \text{ wins}] = N \cdot \Pr[A' \text{ wins}] \le N \cdot Adv_{PKF}$

Since Adv_{PKE} is negligible, probability that $\mathcal A$ wins GNIOT is negligible.

Financial Crypto 2008

Proof Sketch, continued

Case 2: $(a,b) \in I$, but I is not a well-formed index set

Bottom line:

$$Pr[A \text{ wins}] \le 2 Adv_{SKE} + Adv_{PKE}$$

Intuition: A must either

- □ Break PKE to get additional shares of *R*, or
- Break SKE to get plaintext without reconstructing R

Details: See the paper

Oblivious Transfer and Agents

- use SFE to ensure.
- Confidentiality and integrity of agent state
- As much confidentiality as possible for host input

Financial Crypto 2008

Software-only solution

- Due to [Algesheimer, Cachin, Camenisch, Karjoth, 2001]
- Trusted 3rd party acts as "stand-in" for originator in OT
 - TTP must not reveal host inputs to originator
 - TTP must not allow hosts to access agent state <u>or run multiple</u> <u>trials</u>

Mobile Agent Security Issues

- Software-only solutions for protecting privacy of agent data
 - ACCK Protocol: Uses a trusted third party (TTP)
 - Joy Algesheimer, Christian Cachin, Jan Camenisch, and Gunter Karjoth, "Cryptographic security for mobile code," in *Proc. IEEE Symposium on Security and Privacy*, May 2001, pp. 2-11.
 - TX Protocol: Uses threshold cryptography and multiple agents to obviate need for TTP
 - Stephen R. Tate and Ke Xu, "Mobile Agent Security Through Multi-Agent Cryptographic Protocols", in Proc. of the 4th International Conference on Internet Computing (IC 2003), pages 462-468.
- Hardware-assisted solution
 - GTX protocol uses GNIOT primitive

Financial Crypto 2008

Overview of GTX Protocol

- All hosts have TPMs and execute Setup phase of GNIOT prior to start of protocol
- Originator:
 - Executes Transmit phase for each host input bit (n-bits)
 - Adds output of GNIOT Transmit phase to agent
- Host:
 - Calls GNIOT Decrypt on the correct index set
 - Calls GNIOT PostProcess with output of GNIOT Decrypt to obtain exactly the correct number of inputs required
- Non-interaction property:
 - The host and originator need not contact each other after the Transmit phase
- All other protocols require some form of interaction when the agent reaches the host

Practical aspects

- Experimental results with GTX protocol
 - TPM Simulator
- SAgent framework: platform for testing GTX protocol
- Comparison of GTX to other secure agent protocols

Financial Crypto 2008

SAgent

- Security framework we designed for the JADE platform
- Designed for comprehensive protection of mobile agent data
- Secure agent protocols very complex
- Purpose of SAgent: design a simple, usable interface that abstracts protocol details
- Abstracted interface handles various secure agent protocols
- GTX added to SAgent

Conclusion

- Showed how to remove interaction requirements in OT
- Provide rigorous security proofs for our GNIOT construction
- Apply GNIOT primitive to secure agent computations
- Showed GTX protocol is efficient